Фракталы smallest gray scale.jpg (1646 bytes)mandelbrotik.jpg (1129 bytes)

Вообще-то у фракталов долгая история. Началась она во времена Фибоначчи (Leonardo Pisano, Fibonacci, родился около 1170 — умер после 1228), который первым заинтересовался размножением кроликов. Некто поместил пару новорождённых кроликов в некоем месте, огороженном со всех сторон стеной, чтобы узнать, сколько пар кроликов родится при этом в течение года, если природа кроликов такова, что через месяц пара кроликов производит на свет другую пару, а рождают кролики со второго месяца после своего рождения. Эта задача производит первый в истории ряд чисел с некоторыми фрактальными свойствами. Сейчас фракталами обычно считают бесконечно повторяющиеся самоподобные фигуры, например, очертания берега моря. Интересно, что впервые с этим фактом встретились в XIX веке. Адмиралтейству Великобритании захотелось написать на карте общая длина береговой линии Британских островов равна стольким-то милям. Они назначили кого-то для этой работы, снабдили его картами и курвиметром и — вперёд! И тогда выяснилось, что искомая длина сильно зависит от масштаба. Когда мы увеличиваем масштаб, на карте возникают всё новые и новые бухты, бухточки и бухтёшечки, и общая длина таким образом возрастает потенциально до бесконечности.

Мои же взаимоотношений с ними восходят ко времени учёбы в МАИ. Нам рассказывали много всего интересного о математике. В частности, строили примеры фигур, периметр которых бесконечен, а площадь конечна или даже равна нулю. Тогда как раз появились вычислительные машины, которые позволили наглядно показывать картинки, на ручное построение которых потребовалось бы затратить сотни лет. В итоге получалась своего рода компьютерная живопись. И кто бы мог подумать, что к такому результату приведут исследования задач вроде исчисления популяции кроликов в зависимости от количества доступного корма. К моему великому сожалению, в то время я не оценил перспектив и занялся совсем другим. Это одно из немногого, о чём я действительно жалею сегодня. Тогда вся эта теория только начинала активно развиваться, и там довольно легко было получить какие-нибудь значимые результаты. Но вместо меня их получил
Мандельброт

Benoit Mandelbrot

Потом через много лет я взял у приятеля Володи Филиппова книгу Красота фракталов и понял, какую ошибку совершил, но пить боржом было уже, как всегда, поздно. Поэтому я написал для собственного удовольствия программу, которая умеет рисовать вот такие картинки.

К сожалению, рисунки несколько пострадали при сжатии jpeg'ом. На самом деле они лучше. Некоторые из них можно использовать как обои рабочего стола. Когда-нибудь потом переделаю их в gif, как следующие два:

Вообще в природе множество процессов управляются фрактальными законами. Кроме уже упомянутой пары кроликов и длины береговой линии Британии, фрактальной природой обладают растения, облака, кристаллы и многое другое, я бы даже сказал, почти всё на свете. Одна из современных космогонических теорий представляет Вселенную в виде бесконечной последовательности шаров, растущих на границах вселенных большего размера. Получается типично фрактальная конструкция.

В доказательство этого привожу несколько картинок.

fern.jpg (55843 bytes)

Как вам это нравится? Программа на Бейсике, которая рисует эту картинку состоит всего из нескольких строк. Она здесь. А такие математические деревья рисует мой screen saver:

А вот крепость Bourtange в Нидерландах. Ну, кто скажет, что это не фрактал?
Bourtange, Netherlands.jpg (25856 bytes)
И крепость, и цветок кактуса

построены по плану вот этого фрактала:

А уж вулкан Taranaki в Новой Зеландии вообще явный родственник множеству Мандельброта.


Люблю фракталы. Кстати, и причёска Мандельброта на портрете в начале этой страницы тоже имеет явно фрактальную природу. Мне так кажется, по крайней мере.

Упомянутую выше книгу я нигде не нашёл, поэтому интересующимся рекомендую эту.

Last modified 2018-11-08

--> в самое начало